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Abstract

The notion of deviation operator over spaces with affine connection (Ln-spaces) is introduced
and its applications to deviation equations is considered. On the basis of a deviation identity, by
means of sufficient or necessary and sufficient conditions, different deviation equations are obtained
and considered. It is shown that the deviation equation for auto-parallel trajectories in Ln-spaces
(geodesics in Vn-spaces) allows also other solutions than the well-known solutions for auto-parallel
(geodesic) trajectories. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last decades differential-geometric methods have found their well deserved places
in theoretical physics and especially in theoretical gravitational physics. On the one hand, the
models of the space–time have been extended from Minkowskian and (pseudo) Riemannian
spaces without torsion (Vn-spaces) to the more sophisticated (pseudo) Riemannian spaces
with torsion (Un-spaces) and to spaces with affine connections and metrics [(Ln, g)- and
(L̄n, g)-spaces] [1,2]. On the other hand, objections to such type of generalizations have
been stated based on three major arguments:
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1. The equivalence principle is not valid in spaces more general than (pseudo) Riemannian
spaces without torsion (let us recall that the equivalence principle is related to the fact
that an affine connection can vanish at a point or over a curve in a Vn-space).

2. A Lorentz basis changes under a parallel transport in a (Ln, g)-space. This deformation
(change of the length of the vectors and the angle between them) causes a deformation
of the light cone and on these grounds the decomposition of the space–time in time-like
and space-like regions is violated. The last corollary leads to the abuse of the law of
causality which is one of the most well-founded concepts in temporary physics [3].

3. The role of the torsion (and nonmetricity) [specific for (Ln, g)- and (L̄n, g)-spaces]
is ignorable (or at least torsion and nonmetricity are not measurable) in macro- and
microphysics at the present time [4].

Recently, all three objections could be ignored on the basis of the considerations and the
results obtained in the last years.

1. The first objection can be ignored on the grounds of the fact found by Iliev [5–11] and
later by Hartley [12] that an affine connection can vanish under a special choice of the
basic system at a point or over a curve in a space with affine connection and metrics.
Therefore, every differentiable manifold with an affine connection and metrics can be
used as a model of space–time in which the equivalence principle holds.

2. The second objection can be ignored on the grounds of the fact found by Manoff [13,14]
that in (Ln, g)- and (L̄n, g)-spaces special types of transports (called Fermi–Walker
transports) exist which do not deform a Lorentz basis. Therefore (on the analogy of
the parallel transport in Vn-spaces), the law of causality is not abuse in (Ln, g)- and
(L̄n, g)-spaces if instead of a parallel transport (used in a Vn-space) we use a Fermi–
Walker transport in these type of spaces. Moreover, there also exist other types of trans-
ports (called conformal transports) under which a light cone does not deform [15,16].

3. The third objection could be ignored on the grounds of the mathematical fact that torsion
and nonmetricity could compensate the influence of the curvature and external forces
in a dynamical system. The recent physical theories are not constructed under taking
into account this fact but there are no evidences that this will not be done in future more
comprehensive theories of dynamical systems.

In this background, a question arises about applications of generalizations of well-
constructed mathematical models in the Einstein theory of gravity (ETG) to theories in
(Ln, g)- and (L̄n, g)-spaces. Such models, for instance, are deviation equations used as
theoretical basis for construction of gravitational wave detectors in ETG. They can be gen-
eralized for (Ln, g)- and (L̄n, g)-spaces and are worth being investigated.

The main object by means of which we can generate and investigate deviation equations is
a deviation operator acting on contravariant vector fields over (Ln, g)- and (L̄n, g)-spaces.
This paper is devoted to its properties and possible applications.

In general relativity, as a basis for the theoretical scheme for gravitational wave detectors
proposed by Weber (1958–1961) and discussed by many authors [17–21], the geodesic
deviation equation (proposed by Levi-Civita in 1925 in a co-ordinate basis) [22] has been
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used in the form

D2ξ i

ds2
= Ri jklu

jukξ l, ui ;j uj = ai = 0, (1)

or in the index-free form ∇u∇uξ = [R(u, ξ)]u, a = ∇uu = 0. Its generalization for
non-geodesic trajectories (a �= 0) (proposed by Synge and Schild in 1956 in a co-ordinate
basis) in the form

D2ξ i

ds2
= Ri jklu

jukξ l + ai ;j ξ j , ai = ui ;j uj , (2)

or in index-free form ∇u∇uξ = [R(u, ξ)]u+∇ξ a has also been used by Weber in a special
form for construction of gravitational wave detectors of the type of massive cylinders react-
ing to periodical gravitational processes. The application of these equations in experiments
for detecting gravitational waves turned the attention of many authors to the considerations
and proposals for new deviation equations. Two types of prerequisites for obtaining such
equations are usually used:

1. Physical interpretation of deviation equations as equations for the relative acceleration
between particles, moving on trajectories in (pseudo) Riemannian spaces without torsion,
considered as models of space–time in general theory of relativity, or in relativistic
continuum media mechanics [23–32].

2. Mathematical models for obtaining deviation equations by means of (covariant) dif-
ferential operators, acting on vector fields in spaces with affine connection and metric
[(Ln, g)-spaces] [special case: (pseudo) Riemannian spaces with torsion (Un-spaces) or
Vn-spaces].

In both types of methods, problems arise connected with the physical interpretation of the
quantities defined in the equations as well as with finding exact solutions of the proposed
equations. At the same time, there are many tangential- and cross-points between these
methods [33–35,37,38,43–52].

From mathematical point of view, many of the proposed deviation equations by different
authors can be obtained from the s.c. generalized deviation identity (generalized deviation
equation) in (Ln, g)-spaces [34,35]

∇u∇uξ ≡ [R(u, ξ)]u+ ∇aξ + T (ξ, a)− ∇u[T (ξ, u)] + [LΓ (ξ, u)]u, (3)

or in a (co-ordinate or non-co-ordinate) basis

(ξ i ;j uj );kuk ≡Riklju
kulξ j + ξ i ;j aj + Tkl

iξ kal − (Tkl
iξ kul);j uj + LξΓ i

klu
kul, (4)

where

a = ∇uu = ui ;j uj ei = aiei, u ∈ T (M),

ei = ∂i = ∂

∂xi
(in a co-ordinate basis), ui ;j = eju

i + Γ i
kju

k, Γ i
kj �= Γ i

jk. (5)

The operator R(ξ, u) is the curvature operator

R(ξ, u) = −R(u, ξ)=∇ξ∇u−∇u∇ξ−∇Lξ u=[∇ξ ,∇u]−∇[ξ,u], ξ, u ∈ T (M), (6)
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The operator LΓ (ξ, u) is the deviation operator [34]

LΓ (ξ, u) = Lξ∇u − ∇uLξ − ∇Lξ u = [Lξ ,∇u] − ∇[ξ,u], ξ, u ∈ T (M). (7)

The contravariant vector Lξ u is the Lie derivative of the contravariant vector field u along
the contravariant vector field ξ ,

Lξ u = [ξ, u] = ∇ξ u− ∇uξ − T (ξ, u). (8)

The contravariant vector ∇uξ is the covariant derivative of the vector field ξ along the vector
field u, T (ξ, u) is the torsion vector field

T (ξ, u) = Tkl
iξ kulei, Tkl

i = Γ i
lk − Γ i

kl (in a co-ordinate basis {∂i}),
Tkl

i = Γ i
lk − Γ i

kl − Ckl
i (in a non-co-ordinate basis {ei}),

Lek el = [ek, el] = Ckl
iei . (9)

Remark. Part of the construction of a deviation operator LΓ (ξ, u), related to the con-
travariant vector field ξ , has been used by Kobayashi and Nomizu [36] for the case when
ξ appears as a generator of an infinitesimal affine transformation which preserves an affine
connection.

In the present paper, the notion deviation operator is introduced overLn-spaces and on its
basis different deviation equations are obtained and considered. It is shown that all deviation
equations have the same form and structure as deviation equations in the standard spaces
with affine connection and metrics [(Ln, g)-spaces] as far as covariant structures (covariant
affine connection [39], covariant metric) have not been introduced in their structure. The
reason for that statement is trivial because of the fact that in the construction of the deviation
equations in Ln-spaces only structures related to the affine connection can be used. The
situation changes when covariant structures are incorporated in the construction of the
deviation equations. In such case, the kinematic characteristics of vector fields have to be
taken into account [40]. It is also shown that the auto-parallel deviation equation (geodesic
deviation equation in Vn-spaces) admit other than the well-known solutions. The necessary
and sufficient condition for the existence of the auto-parallel deviation equation and the
deviation equation of Synge and Schild are also found. In Section 2 the notion of deviation
operator and its properties are introduced and considered. In Section 3 different types of
deviation equation are found on the basis of the deviation identity for a contravariant vector
field ξ called deviation vector field. Section 4 comprises some concluding remarks.

2. Deviation operator

By means of the structure of the curvature operator R(ξ, u) = ∇ξ∇u−∇u∇ξ −∇Lξ u =
[∇ξ ,∇u] − ∇[ξ,u], the commutator [∇w,R(ξ, u)], w, ξ, u ∈ T (M), can be presented in the
form

[∇w,R(ξ, u)] = [∇w,LΓ (ξ, u)] + [∇w, [∇ξ ,∇u]] − [∇w, [Lξ ,∇u]], (10)
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where

LΓ (ξ, u) = Lξ∇u − ∇uLξ − ∇Lξ u = [Lξ ,∇u] − ∇[ξ,u]. (11)

The operatorLΓ (ξ, u) appears as a new operator, constructed by means of the Lie-differential
operator Lξ and the covariant differential operator ∇u.

Definition 1. The operator LΓ (ξ, u) is called the deviation operator. It has the following
properties:

1. LΓ (ξ, u)+ LΓ (u, ξ) = Lξ∇u + Lu∇ξ − (∇uLξ + ∇ξLu), ξ, u ∈ T (M).
LΓ (ξ, u)− LΓ (u, ξ) = Lξ∇u + ∇ξLu − (∇uLξ + Lu∇ξ )− 2∇Lξ u.

2. LΓ (f ξ, u) = Lf ξ∇u − ∇uLf ξ − ∇Lf ξ u, f ∈ Cr(M).
3. LΓ (ξ, fu) = fLΓ (ξ, u).
4. LΓ (ξ, u) = LΓ (ξ, uαeα) = uαLΓ (ξ, eα) (follows from 3).

Remark. Greek indices are used instead of Latin indices for a non-co-ordinate basis.
5. LΓ (ξ, u+ v) = LΓ (ξ, u)+ LΓ (ξ, v), ξ, u, v ∈ T (M).
6. LΓ (ξ + η, u) = LΓ (ξ, u)+ LΓ (η, u), ξ, η, u ∈ T (M).
7. LΓ (αξ, u) = αLΓ (ξ, u),α ∈ F(R orC).

From 3, 5–7, it follows that LΓ (ξ, u) appears as a bilinear operator with respect to
the contravariant vector fields ξ and u.

8. [LΓ (f ξ, u)]v = f [LΓ (ξ, u)]v + [(uv)f − (∇uv)f ]ξ + (uf)(∇ξ − Lξ )v + (vf)∇uξ ,
f ∈ Cr(M), r ≥ 2, ξ, u, v ∈ T (M).

9. LΓ (ξ, ξ) = [Lξ ,∇ξ ], [compare with R(ξ, ξ) = 0].
10. Action of the deviation operator on a function f : [LΓ (ξ, u)]f = 0, f ∈ Cr(M), r ≥ 2.
11. Action of the deviation operator on a contravariant vector field:

[LΓ (ξ, u)](fv) = f [LΓ (ξ, u)]v, ξ, u, v ∈ T (M),

[LΓ (ξ, u)]v = vβ [LΓ (ξ, u)]eβ = vj [LΓ (ξ, u)]∂j = uγ vβ [LΓ (ξ, eγ )]eβ
= ujvi[LΓ (ξ, ∂j )]∂i .

The connections between the action of the deviation operator and that of the curvature
operator on a contravariant vector field can be given in the form

[LΓ (ξ, u)]v=[R(ξ, u)]v + [∇u∇v − ∇∇uv]ξ − T (ξ,∇uv)+ ∇u[T (ξ, v)]. (12)

In a co-ordinate basis, [LΓ (ξ, ∂l)]∂k has the form

[LΓ (ξ, ∂l)]∂k = [ξ i ;k;l − Rikljξ
j + (Tjk

iξ j );l]∂i = (LξΓ
i

kl)∂i . (13)

The componentsLξΓ i
kl are called Lie derivative of the componentsΓ i

kl of a contravari-
ant affine connection Γ along the contravariant vector field ξ . It can be written also in
the form [41]

LξΓ
i

kl = ξ i ,k,l + ξjΓ i
kl,j − ξ i ,jΓ

j

kl + ξj ,kΓ
i

jl + ξj ,lΓ
i

kj. (14)



342 S. Manoff / Journal of Geometry and Physics 39 (2001) 337–350

By means of LξΓ i
kl, the expression for [LΓ (ξ, u)]v can be presented in the form

[LΓ (ξ, u)]v = vkul(LξΓ
i

kl)∂i

= [ξ i ;k;lvkul − Rikljv
kulξ j + (Tjk

iξ j );lvkul]∂i . (15)

In this way, the second covariant derivative ∇u∇vξ of the contravariant vector field ξ
can be presented by means of the deviation operator in the form

∇u∇vξ = [R(u, ξ)]v + ∇ξ∇uv − Lξ (∇uv)− ∇u[T (ξ, v)] + [LΓ (ξ, u)]v

= ([R(u, ξ)]v)+ ∇ξ∇uv − ∇uLξ v − ∇Lξ uv − ∇u[T (ξ, v)]. (16)

For v = u, the last identity is called generalized deviation identity [34].
12. Action of the deviation operator on a contravariant tensor fieldV = V AeA = V α1···αl eα1⊗

· · · ⊗αl ∈ ⊗l (M):

[LΓ (ξ, u)]V = uγ V A[LΓ (ξ, eγ )]eA = uγ V B(LξΓ
A
Bγ )eA

= −(SBαAβV BLξΓ
α
βγ u

γ )eA, (17)

where

LξΓ
A
Bγ = −SBαAβLξΓ α

βγ ,

[LΓ (ξ, u)]eB = (LξΓ
A
Bγ )u

γ eA

= −SBαAβ [ξα/β/γ − Rαβγ δξ
δ + (Tδβ

αξδ)/γ ]uγ eA,

SBα
Aβ = −

l∑
k=1

gβαkg
βk
α g

β1
α1
gβ2
α2

· · · gβk−1
αk−1g

βk+1
αk+1 · · · gβlαl . (18)

13. The deviation operator obeys the Leibnitz rule for differentiation of tensor fields:
[LΓ (ξ, u)](V⊗S) = [LΓ (ξ, u)]V⊗S+V⊗[LΓ (ξ, u)]S,V ∈ ⊗l (M),S ∈ ⊗k(M).

14. The deviation operator appears as linear differential operator acting on contravariant or
covariant tensor fields:

[LΓ (ξ, u)](αV1 + βV2) = α[LΓ (ξ, u)]V1 + β[LΓ (ξ, u)]V2, α, β ∈ F(R orC),
Vi ∈ ⊗l (M), i = 1, 2,

[LΓ (ξ, u)](αW1 + βW2) = α[LΓ (ξ, u)]W1 + β[LΓ (ξ, u)]W2, Wi ∈ ⊗k(M),
i = 1, 2.

15. The deviation operator obeys identity analogous to the first type Bianchi identity for the
curvature operator

〈[LΓ (ξ, u)]v〉 ≡ 〈(∇ξ∇u − ∇∇ξ u)v〉 + 〈T (T (ξ, u), v)〉 − 〈T (u,∇ξ v)〉,
ξ, u, v ∈ T (M), (19)

where

〈[LΓ (ξ, u)]v〉 = [LΓ (ξ, u)]v + [LΓ (v, ξ)]u+ [LΓ (u, v)]ξ,

〈(∇ξ∇u − ∇∇ξ u)v〉 = (∇ξ∇u − ∇∇ξ u)v + (∇v∇ξ − ∇∇vξ )u+ (∇u∇v − ∇∇uv)ξ,
〈T (u,∇ξ v)〉 = T (u,∇ξ v)+ T (v,∇uξ)+ T (ξ,∇vu). (20)
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In a non-co-ordinate basis (where /α means covariant derivative along eα) this identity
obtains the form

(LξΓ
γ
αβ)v

αuβ + (LuΓ
γ
αβ)ξ

αvβ + (LvΓ
γ
αβ)u

αξβ

≡ ξγ /α/βv
αuβ + uγ /α/βξ

αvβ + vγ /α/βu
αξβ + T〈αβκTκδ〉γ vαξβuδ

−Tαβγ (uαvβ/δξ δ + vαξβ/δu
δ + ξαuβ/δv

δ). (21)

The commutator of the covariant differential operator and the deviation operator obeys
the following identity:

〈[∇w,LΓ (ξ, u)]〉 ≡ 〈[∇w, [Lξ ,∇u]]〉 − 〈R(w,Lξ u)〉, (22)

where

〈[∇w,LΓ (ξ, u)]〉 = [∇w,LΓ (ξ, u)] + [∇u,LΓ (w, ξ)] + [∇ξ ,LΓ (u,w)],

〈[∇w, [Lξ ,∇u]]〉 = [∇w, [Lξ ,∇u]] + [∇u, [Lw,∇ξ ]] + [∇ξ , [Lu,∇w]],

〈R(w,Lξ u)〉 =R(w,Lξ u)+ R(u,Lwξ)+ R(ξ,Luw), ξ, u,w ∈ T (M).

3. Deviation equations

By means of the explicit form of the deviation operatorLΓ (ξ, u) and its connection with
the curvature operator, the generalized deviation identity

∇u∇uξ ≡ [R(u, ξ)]u+ ∇aξ + T (ξ, a)− ∇u[T (ξ, u)] + [LΓ (ξ, u)]u, ∇uu = a,

(23)

can be presented in different equivalent forms:

(a) ∇u∇uξ ≡ [R(u, ξ)]u+ ∇ξ a − Lξ a − ∇u[T (ξ, u)] + [LΓ (ξ, u)]u. (24)

For obtaining this form, the relation Lξ a = ∇ξ a − ∇aξ − T (ξ, a) has been used. If the
explicit form of [LΓ (ξ, u)] is substituted in the deviation identity, it will have the form

(b) ∇u∇uξ ≡ [R(u, ξ)]u+ ∇ξ a − ∇u[Lξ u+ T (ξ, u)] − ∇Lξ uu, (25)

or the form

(c) ∇u∇uξ ≡ [R(u, ξ)]u+ ∇aξ + Lξ a + T (ξ, a)− ∇u[Lξ u+ T (ξ, u)] − ∇Lξ uu.

(26)

In a co-ordinate basis, the generalized deviation identity can be written in the forms:

(ξ i ;j uj );kuk ≡Riklju
kulξ j + ξ i ;j aj − (Tkl

iξ k);j ujul + ukulLξΓ
i

kl

=Riklju
kulξ j + ai ;j ξ j − Lξ ai − (Tkl

iξ kul);j uj + ukulLξΓ
i

kl

=Riklju
kulξ j + ai ;j ξ j − (Lξ u

i);j uj − ui ;j (Lξ uj )− (Tkl
iξ kul);j uj

=Riklju
kulξ j + ai ;j ξ j − ui ;j (Lξ uj )− (Lξ u

i + Tkl
iξ kul);j uj , (27)
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where

ukulLξΓ
i

kl = Lξ ai − (Lξ u
i);j uj − ui ;j (Lξ uj ),

Lξ u
i = ui ;kξk − ukξ i ;k − Tkl

iξ kul. (28)

In analogous way the generalized deviation equation can be presented in a non-co-ordinate
basis.

The generalized deviation equation in a co-ordinate basis has been used for obtaining
different types of deviation equations in Vn-spaces, admitting certain types of symmetries
[34]. It was found that deviation equations and their solutions proposed by different authors
and obtained by different methods can be found and considered on the basis of unique
method connected with the generalized deviation identity and some additional conditions
for the contravariant vector fieldsu and ξ . These conditions are generally covariant equations
of first order for u or ξ . If such conditions determine the contravariant vector field ξ or are
given as covariant equations of first order for u or ξ (or only for ξ ) (for example, conditions
of the typeLuξ = 0, ∇uξ = 0), then they appear as “first integrals” of the deviation equation
in the sense of solution of this equation.

Some conditions (part of which appear as solutions) for deviation equations obtained on
the ground of these conditions and the generalized deviation identity are given below as
generalizations for Ln-spaces:

1. Lξ u = 0, ∇uu = a = 0. Geodesic (auto-parallel) deviation equation (Jacobi equation),
(Levi-Civita, 1925) [22]

∇u∇uξ = [R(u, ξ)]u− ∇u[T (ξ, u)]. (29)

2. Lξ u = 0, ∇uu = a = ku, k ∈ Cr(M), r ≥ 2. Jacobi equation in non-canonical form

∇u∇uξ = [R(u, ξ)]u+ (ξk)u+ k∇ξ u− ∇u[T (ξ, u)]. (30)

3. Lξ u = 0. Deviation equation of Synge and Schild (deviation equation without dragging-
along) (Synge and Schild, 1956) (Schmutzer, 1968)

∇u∇uξ = [R(u, ξ)]u+ ∇ξ a − ∇u[T (ξ, u)]. (31)

4. Lξ u = fu, f ∈ Cr(M), r ≥ 2. Deviation equation with co-linear dragging-along
(Mashhoon, 1975) (Hawking and Ellis, 1973)

∇u∇uξ = [R(u, ξ)]u+ ∇ξ a − (uf)u− 2fa − ∇u[T (ξ, u)], (32)

5. Lξ u = fu, f = 1/a − 1, a ∈ Cr(M), r ≥ 2. Deviation equation with co-linear
dragging-along

∇u∇uξ = [R(u, ξ)]u+ ∇ξ a − 2

(
1

a
− 1

)
a −

[
u

(
1

a

)]
u− ∇u[T (ξ, u)]. (33)

6. Lξ u = fu, Lξ a = 2fa + (uf)u. Deviation equation of co-linear dragging-along of u and
a (see Jacobi equation No.(1))

∇u∇uξ = [R(u, ξ)]u− ∇u[T (ξ, u)].
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7. Lξ u = fu + gξ , f, g ∈ Cr(M), r ≥ 2. Deviation equation of dragging-along with
friction

∇u∇uξ = [R(u, ξ)]u+ ∇ξ a − 2fa − (uf)u− (ug)ξ − g(∇uξ + ∇ξ u)

−∇u[T (ξ, u)]. (34)

8. Lξ u = ∇ξ u−T (ξ, u), (∇uξ − 0). Deviation equation of parallel transport of ξ along u:

∇u∇uξ = 0. (35)

9. Lξ u = (1/α)[∇uξ + (1 − α)u], α ∈ Cr(M), r ≥ 2. Deviation equation of relative
dragging-along (Iliev, 1980)

∇u∇uξ = α

α + 1

{
[R(u, ξ)]u+ ∇ξ a − 2

(
1

α
− 1

)
a −

[
u

(
1

α

)]
(u+ ∇uξ)

− 1

α
∇∇uξ u− ∇u[T (ξ, u)]

}
. (36)

10. Lξ u = qa, q ∈ Cr(M), r ≥ 2. Deviation equation of abating dragging-along

∇u∇uξ = [R(u, ξ)]u+ ∇ξ a − (uq)a − q(∇ua + ∇au)− ∇u[T (ξ, u)]. (37)

11. Lξ u = −T (ξ, u). Deviation equation of dragging-along with torsion

∇u∇uξ = [R(u, ξ)]u+ ∇ξ a + ∇T (ξ,u)u. (38)

12. ∇uu = a = 0. Deviation equation of auto-parallel transport of u:

∇u∇uξ = [R(u, ξ)]u− ∇u[Lξ u+ T (ξ, u)] − ∇Lξ uu. (39)

13. ∇ξ u = 0. Deviation equation of parallel transport of u along ξ :

∇u∇uξ = −∇u[Lξ u+ T (ξ, u)]. (40)

14. Lξ u = 0, ∇ξ u = 0. Deviation equation without dragging-along ξ and with parallel
transport of u along ξ :

∇u∇uξ = −∇u[T (ξ, u)]. (41)

15. ∇ξ u = 0, ∇uu = a = 0. Deviation equation with parallel transport of u along ξ and u
(see No. 13)

∇u∇uξ = −∇u[Lξ u+ T (ξ, u)]. (42)

*** The deviation equations of Synge and Schild (see No. 3) are form invariant with
respect to different conditions required forLξ a. The same is also valid for the generalized
deviation identity written in the form

∇u∇uξ ≡ [R(u, ξ)]u+ ∇ξ a − ∇u[Lξ u+ T (ξ, u)] − ∇Lξ uu.

In cases when deviation equations are obtained only by means of conditions of a type of
“first integrals” for the contravariant vector field ξ , the corresponding deviation equations
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are valid for arbitrary vector field u. The conditions appear as sufficient but not neces-
sary conditions for the existence of the corresponding deviation equations. Other sufficient
conditions as “first integrals” can also be found for one and the same type of deviation
equation.

Proposition 1. The necessary and sufficient conditions for the existence of the deviation
equation of Synge and Schild in Ln-spaces

∇u∇uξ ≡ [R(u, ξ)]u+ ∇ξ a − ∇u[T (ξ, u)]

follow from the generalized deviation identity and can be written in the form

Lξ a = [LΓ (ξ, u)]u, Lξ a
i = ukulLξΓ

i
kl. (43)

Proposition 2. The necessary and sufficient conditions for the existence of the auto-parallel
(geodesic) deviation equation (Jacobi equation) in Ln-spaces

∇u∇uξ ≡ [R(u, ξ)]u− ∇u[T (ξ, u)]

are the conditions

Lξ a = ∇ξ a + [LΓ (ξ, u)]u, Lξ a
i = ai ;j ξ j + ukulLξΓ

i
kl. (44)

The last two formulated propositions can be proved in trivial manner by means of the
generalized deviation identity.

It follows from the examples 1 and 6 that for deviation equations, the Jacobi (auto-parallel,
geodesic deviation) equation allows other conditions than the condition ∇uu = a = 0,
considered until now in the literature. Analogous statement is also valid for the deviation
equation of Synge and Schild. The deviation equation of Synge and Schild can be considered
as a corollary of the equation Lξ u = 0 (Luξ = 0) for a vector field ξ and an arbitrary given
vector field u. The last equation appears only as a sufficient but not as a necessary condition
for the existence of the deviation equation of Synge and Schild, which, therefore, allows
other “first integrals” as well. Let us argue this fact in more detail.

The way of getting the deviation equation of Synge and Schild gives the possibility for
proving the following proposition:

Proposition 3. Every vector field ξ which satisfies the equationLξ u = 0 (Lξ ui = 0) for an
arbitrary (given) vector field u is a solution of the deviation equation of Synge and Schild.

Proof. There are at least two ways [34,37] for proving this proposition:

1. The proof follows immediately from the generalized identity and the conditionLξ u = 0.
2. From the conditionLξ u = 0 and after covariant differentiation along u of the expression

for ∇uξ the deviation equation follows. �

Corollary. The condition Lξ u = 0 is a “first integral” for the deviation equation of Synge
and Schild [for an arbitrary (given) vector field u].
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Remark. Under “first integral” here one can define a quantity whose covariant derivative
along an arbitrary vector field u leads to the deviation equation of a concrete type (here of
Synge and Schild).

Remark. In finding out deviation equations, different authors used only sufficient (or “first
integrals”) conditions for these equations (like those in Proposition 3). They do not take
into account that the obtained equations can also fulfill other sufficient conditions than the
considered one (see for example, [34,37]).

If we introduce a metric in a Ln-space leading to a (Ln, g)-space then the metric
could come into use. The second covariant derivative of a vector field ξ along a non-null
(non-isotropic) vector field u can be written in two parts: one is collinear to u, and the
other is orthogonal to the vector field u. The second term can be interpreted as a relative
acceleration between two points, lying on a hyper-surface orthogonal to the vector field u.
Since the (infinitesimal) deviation vector has also to lie on this hyper-surface, then in this
case ξ has to obey the condition

g(ξ, u) = 0, (45)

or ξ has to be in the form

ξ⊥ = ḡ[hu(ξ)] = gikhklξ
lei, g(ξ⊥, u) = 0, ḡ = gijeiej ,

hu = g − 1

e
g(u)⊗ g(u) = hije

iej , eiej = 1

2
(ei ⊗ ej + ej ⊗ ei),

eiej = 1

2
(ei ⊗ ej + ej ⊗ ei), g = gije

iej , e = g(u, u) �= 0,

gij = gji, ei = dxi (in a co-ordinate basis). (46)

Definition 2. The deviation equation which is obtained for

ḡ[hu(∇u∇uξ)] or for hu(∇u∇uξ)

under the conditions

Lξ⊥u = 0, g(u, ξ⊥) = 0, ξ⊥ = ḡ[hu(ξ)], (47)

is called projective deviation equation of Synge and Schild [42].

It follows from the form of ḡ[hu(∇u∇uξ)] that this equation can be written in the form
[40]

ḡ[hu(∇u∇uξ⊥)] = ḡ[A(ξ⊥)] = ḡ[sD(ξ⊥)] + ḡ[W(ξ⊥)] + 1

n− 1
Uξ⊥, (48)

or in index form

gijhjk(ξ
k
⊥;lu

l);mum = gijAjkξ
k
⊥ = gij(sDjk +Wjk)ξ

k
⊥ + 1

n− 1
Uξi⊥, (49)

where ξk⊥ = gklhlmξ
m, hu(ξ⊥) = hu(ḡ)hu(ξ) = hu(ξ), ḡ[hu(ξ⊥)] = ḡ[hu(ξ)] = ξ⊥.
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The projective deviation equation can also be written in an equivalent form

hu(∇u∇uξ⊥) = sD(ξ⊥)+W(ξ⊥)+ 1

n− 1
Ug(ξ⊥). (50)

Every vector field ξ⊥ [for an arbitrary non-null (non-isotropic) vector field u] which
fulfills the conditions Lξ⊥u = 0, ξ⊥ = ḡ[hu(ξ)], is a solution of the projective deviation
equation of Synge and Schild. In other words, the solution of the equation Lξ⊥u = 0
(or Luξ⊥ = 0) for a vector field ξ⊥(xk) and a given vector field u(xk) is a solution of the
projective deviation equation. It follows in this case that if the components of the vector field
ξ = ξ iei = ξk∂k should be solutions of a homogeneous (or non-homogeneous) oscillator
equation, then an additional equation for the vector field u has to be proposed, which could
lead to such properties of ξ .

Deviation equations can be considered in special cases of Un-spaces [(pseudo) Rieman-
nian spaces with torsion] or in Vn-spaces. In spaces with affine connection and metric
[(Ln, g)-spaces] the generalized deviation identity can be connected with the kinematic
characteristics of the relative acceleration (such as shear acceleration, rotation acceleration
and expansion acceleration) and with the kinematic characteristics of the relative velocity
(shear, rotation, expansion).

Remark. The action of the deviation operator on covariant vector fields is determined by
its structure and especially by the Lie differential operator. For a covariant vector field
there is no appropriate deviation identity in Ln-spaces for describing the second covariant
derivative of this field.

4. Conclusions

Deviation operator, constructed by means of the covariant and the Lie-differential op-
erator, can be used for obtaining and investigating deviation equations in Ln-spaces in an
analogous way as in (Ln, g)-spaces. The situation changes when metric tensor fields are
used to connect the deviation equations with the kinematic characteristics of contravariant
vector fields. The probability of arising problems would be mostly connected with the phys-
ical interpretation of the introduced quantities than with the differential-geometric structure
of a Ln-space.
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